An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit
نویسندگان
چکیده
Optical microscopy suffers from a fundamental resolution limitation arising from the diffractive nature of light. While current solutions to sub-diffraction optical microscopy involve combinations of near-field, non-linear and fine scanning operations, we hereby propose and demonstrate the optical super-microscope (OSM) - a superoscillation-based linear imaging system with far-field working and observation distances - which can image an object in real-time and with sub-diffraction resolution. With our proof-of-principle prototype we report a point spread function with a spot size clearly reduced from the diffraction limit, and demonstrate corresponding improvements in two-point resolution experiments. Harnessing a new understanding of superoscillations, based on antenna array theory, our OSM achieves far-field, sub-diffraction optical imaging of an object without the need for fine scanning, data post-processing or object pre-treatment. Hence the OSM can be used in a wide variety of imaging applications beyond the diffraction limit, including real-time imaging of moving objects.
منابع مشابه
Single-image far-field subdiffraction limit imaging with axicon.
This Letter presents a technique for subdiffraction limit imaging termed Bessel beam microscopy (BBM). By placing a lens in series with an axicon in the optical path of a microscope, the diffraction-limited resolution of the base microscope is improved by one third. This improvement is demonstrated experimentally by resolving individual subdiffraction limit fluorescent beads in a close-pack arr...
متن کاملA super-oscillatory lens optical microscope for subwavelength imaging.
The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured o...
متن کاملHyperlenses and metalenses for far-field super-resolution imaging.
The resolution of conventional optical lens systems is always hampered by the diffraction limit. Recent developments in artificial metamaterials provide new avenues to build hyperlenses and metalenses that are able to image beyond the diffraction limit. Hyperlenses project super-resolution information to the far field through a magnification mechanism, whereas metalenses not only super-resolve ...
متن کاملMultiplane 3D superresolution optical fluctuation imaging
By switching fluorophores on and off in either a deterministic [1, 2] or a stochastic [3–7] manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) [7, 8] provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-o...
متن کاملOptical Hyperlens: Far-field imaging beyond the diffraction limit.
We propose an approach to far-field optical imaging beyond the diffraction limit. The proposed system allows image magnification, is robust with respect to material losses and can be fabricated by adapting existing metamaterial technologies in a cylindrical geometry.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013